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Abstract 

Purpose: This study investigates the efficacy of machine learning (ML) approaches for automated 

vocabulary acquisition in English as a Second Language (ESL) classrooms. It focuses on 

transformer-based models (specifically BERT), comparing their performance to traditional 

supervised algorithms and examining effects on learner vocabulary gains. Methods: University-

level ESL students in Azerbaijan (N = 60) participated in an experiment with an ML-driven 

vocabulary learning tool. A pre-trained BERT model was fine-tuned via TensorFlow for 

vocabulary prediction tasks and deployed to personalize practice for an experimental group, while 

a control group received conventional instruction. Support Vector Machine (SVM) and Random 

Forest models served as baseline algorithms for predictive performance benchmarking. Vocabulary 

knowledge was assessed pre- and post-intervention using standardized tests, and ML models were 

evaluated on accuracy, precision, and recall. Results: The fine-tuned BERT model achieved higher 

predictive accuracy (88%) than SVM (75%) or Random Forest (78%), with superior precision and 

recall. The experimental group outperformed the control on post-test vocabulary gains (mean 

improvement = 10.1 vs. 5.7 words, p < .01). Implications: Results indicate that transformer-based 

ML can enhance vocabulary learning outcomes, offering context-aware recommendations that 

surpass traditional models. We discuss how deep neural networks and reinforcement learning 

techniques can be integrated into ESL pedagogy to support adaptive vocabulary instruction. The 

study contributes a framework for applying state-of-the-art ML in language education and 

highlights implications for personalized learning and curriculum design. 
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Introduction 

Vocabulary knowledge is a cornerstone of second language proficiency, fundamentally affecting 

learners’ reading comprehension and communicative competence. Research in applied linguistics 

has established that learners require a large lexicon to function effectively in English—estimates 

suggest knowing 8,000–9,000 word families is necessary for reading authentic texts. However, 

traditional classroom methods often fall short in facilitating sufficient vocabulary growth. 

Instructed second language vocabulary learning typically involves word lists, flashcards, and rote 

memorization, which can be laborious and disengaging for students (Schmitt, 2008). There is a 

clear need for more effective approaches to accelerate vocabulary acquisition while maintaining 

learner motivation. 

Computer-Assisted Language Learning (CALL) and Mobile-Assisted Language Learning 

(MALL) interventions have shown promise in enhancing vocabulary learning outcomes by 

increasing engagement and providing repeated exposure. Meta-analyses of technology-mediated 

vocabulary learning indicate significant benefits. For example, Burston (2015) reviewed 20 years 

of MALL projects and found overall positive effects on vocabulary retention across numerous 

studies. Likewise, Tsai and Tsai (2018) conducted a meta-analysis of digital game-based 

vocabulary learning, confirming that mobile and game-based methods yield higher vocabulary 

gains than traditional instruction (mean effect size d ≈ 0.95). Empirical studies corroborate these 

trends: Basal et al. (2016) reported that Turkish EFL learners who used mobile vocabulary apps 

(e.g., flashcard and quiz applications) performed significantly better on vocabulary tests than those 

using paper-based methods. Such findings align with theories of engagement and spaced repetition, 

suggesting that technology offers affordances for frequent, contextualized exposure to new words 

(Nation, 2013). 

Artificial intelligence (AI) in vocabulary learning: Building on the success of CALL/MALL, 

researchers have increasingly explored AI-driven approaches to further personalize and automate 

vocabulary acquisition. Early intelligent vocabulary tutors used algorithms to adapt practice to 

learner performance. For instance, Chen and Chung (2008) developed a personalized mobile 

vocabulary learning system using Item Response Theory to select words matching the learner’s 

proficiency, resulting in improved retention rates. Recent reviews note a surge in AI applications, 

ranging from chatbots to intelligent tutoring systems, designed to enhance vocabulary and other 

language skills (Küçük & Solmaz, 2021; Chen & Choi, 2021). Chen and Choi (2021) provide an 

overview of AI in English vocabulary learning and highlight that modern AI techniques—

especially machine learning—enable more fine-grained feedback and adaptive content than rule-

based CALL programs of the past. These AI-based systems can potentially address individual 

learner needs in real time, an important aspect of fostering learner autonomy (Küçük & Solmaz, 

2021). 
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Transformer-based models and deep learning: The advent of deep neural networks and 

transformer architectures has revolutionized Natural Language Processing (NLP) in recent years, 

with significant implications for language education. Notably, Bidirectional Encoder 

Representations from Transformers (BERT) (Devlin et al., 2019) has achieved state-of-the-art 

performance on a range of language understanding tasks by learning rich contextual 

representations of words. Unlike earlier word embedding models that provide a single static vector 

per word, BERT yields contextualized embeddings that capture nuanced word meanings in 

different sentences. This capacity to model context is highly relevant for vocabulary learning, 

where understanding a word’s meaning requires seeing it in varied linguistic environments 

(Godwin-Jones, 2018). Indeed, researchers have begun integrating transformer models into CALL 

systems. For example, Wu et al. (2023) used BERT to automatically score vocabulary usage in 

elementary science explanations, finding that fine-tuned BERT models could predict human 

vocabulary acquisition scores with high reliability (quadratic weighted κ ≈ 0.80). Similarly, an 

intelligent mobile-assisted language learning study by Zhao et al. (2023) incorporated a BERT-

based recommender to suggest personalized vocabulary exercises, yielding notable improvements 

in learners’ quiz performance over a semester. These studies illustrate the potential of transformer 

models to provide context-aware vocabulary instruction beyond what traditional methods or 

simpler algorithms can offer. 

Deep learning approaches have also been combined with gamification and feedback 

mechanisms to motivate learners. In a recent study, Alanzi and Taloba (2024) proposed a gamified 

language learning system that leverages a pre-trained transformer model to analyze learner 

responses and provide immediate, context-sensitive feedback on vocabulary use. Their system, 

which awards points and badges for successful word learning, achieved 99% accuracy in adaptive 

feedback and led to significantly greater vocabulary gains compared to a control condition (Alanzi 

& Taloba, 2024). These results echo findings by Hsu et al. (2023), who examined AI-assisted image 

recognition for vocabulary learning. Hsu et al. found that an experimental group receiving AI-

generated image cues for target words showed larger gains in vocabulary knowledge and self-

regulation, and significantly lower anxiety, than a control group. The literature thus suggests that 

transformer-driven and deep learning–based systems can enhance both the effectiveness and 

affective experience of L2 vocabulary acquisition. 

Supervised learning and reinforcement learning in vocabulary tasks: While transformers 

represent the cutting edge, classical supervised ML algorithms have also been applied to 

vocabulary learning challenges. Support Vector Machines (SVMs) and Random Forests have been 

used, for example, to classify learner essays by vocabulary level or to predict whether a learner 

knows a given word based on response patterns (Zhou & Fan, 2019). These models typically 

require hand-crafted features (e.g. word frequency, length, or quiz scores) and have achieved 

moderate success in adaptive vocabulary testing contexts. However, they may struggle with 

capturing semantic context or polysemy without extensive feature engineering. With the growth 
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of learner data availability, data-driven approaches like neural networks have outperformed SVMs 

on language tasks that involve complex patterns. Still, SVM and decision-tree ensembles remain 

useful benchmarks for evaluating the added value of deep learning. 

Another emerging paradigm is reinforcement learning (RL) for personalized content sequencing. 

Rather than predicting static outcomes, RL agents learn to recommend vocabulary activities by 

maximizing long-term retention or engagement rewards. Recent work by Zhang and Li (2024) 

introduced a deep Q-learning algorithm to recommend English words in an optimal sequence for 

individual learners, treating vocabulary scheduling as a sequential decision problem. Their deep 

RL-based system outperformed a fixed-frequency review schedule, as learners retained more 

words over time. In a related vein, Dudiak et al. (2023) experimented with a social robot that uses 

Q-learning to adjust its vocabulary teaching strategy in English–Slovak bilingual sessions, finding 

that the RL-driven robot could adaptively focus on words the learner found challenging. These 

innovative approaches align with calls for more “self-improving” language learning systems that 

can learn from student interactions to optimize instruction (Zawacki-Richter et al., 2019). 

However, RL applications in CALL are still nascent, and their efficacy relative to supervised and 

deep learning approaches remains an open question. 

Research gap: Although the literature confirms that ML-based interventions can facilitate L2 

vocabulary learning, there is a lack of comprehensive studies directly comparing different ML 

approaches (traditional vs. deep learning vs. RL) in authentic classroom settings. Most 

transformer-based implementations for vocabulary have been evaluated either on prediction tasks 

(e.g., automated scoring) or in controlled lab environments. Meanwhile, few studies have reported 

on deploying such models in real ESL classrooms to measure actual learning gains. Educators and 

researchers thus have limited guidance on how newer AI models stack up against more established 

ML algorithms when applied to vocabulary teaching practice. This study aims to fill that gap by 

systematically evaluating machine learning approaches for automated vocabulary acquisition 

in a classroom context. 

We focus on three representative approaches: (1) a fine-tuned BERT transformer model, (2) an 

SVM classifier, and (3) a Random Forest ensemble. The transformer represents a deep neural 

network leveraging vast language knowledge, whereas SVM and Random Forest are classic 

supervised learners often used as baselines. We integrate the models into a vocabulary learning 

tool and assess: (a) their predictive performance in tailoring vocabulary practice to learners, and 

(b) the learning outcomes (vocabulary gains) of students using the ML-assisted system versus a 

control group. Specifically, the research addresses the following questions: 

• RQ1: How does a transformer-based model (BERT) compare to traditional supervised 

models (SVM, Random Forest) in predicting and recommending appropriate vocabulary 

items for ESL learners? 
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• RQ2: Do ESL students who learn vocabulary with an AI-driven, personalized system 

(powered by BERT) show greater vocabulary acquisition than those receiving traditional 

instruction without AI support? 

• RQ3: What are the practical implications of deploying such ML models in an ESL 

classroom, in terms of instructional integration and learner engagement? 

By investigating these questions, the study contributes empirical evidence on the effectiveness of 

state-of-the-art ML techniques for vocabulary learning in an applied educational setting. The 

findings will inform teachers and CALL developers about the potential benefits and limitations of 

incorporating advanced AI models like BERT into language instruction. 

Methodology 

Participants 

Participants were 60 ESL learners (38 female, 22 male; age 18–21, M = 19.5) enrolled in a first-

year academic English course at Nakhchivan State University in Azerbaijan. All participants were 

native Azerbaijani or Russian speakers and had intermediate English proficiency (Common 

European Framework level B1–B2 based on a placement test). Enrollment in the study was 

voluntary with informed consent, and the activity was approved by the university’s research ethics 

committee. Students were randomly assigned by class section to either an experimental group (n 

= 30) or a control group (n = 30). Both groups followed the same core curriculum and had 

comparable prior exposure to formal English instruction (mean ~7 years). The course carried credit 

towards their degree, ensuring that students were motivated to learn the vocabulary as part of their 

assessment. Attendance was high throughout the intervention (>95%), and all 60 students 

completed the pre- and post-tests. 

Instruments 

ML Models for Vocabulary Prediction: The primary instrument was a set of machine learning 

models developed to predict learners’ vocabulary knowledge and recommend suitable practice 

words. The models included: 

• BERT Transformer Model: We fine-tuned a pre-trained BERT Base (uncased, 12-layer) 

model for the task of vocabulary prediction. The model was implemented in Python using 

TensorFlow 2.0 and HuggingFace’s Transformers library. Fine-tuning was performed on a 

dataset of ESL learner sentence completions and vocabulary quiz responses (see Data 

below). Specifically, the model was trained to output whether a learner would know a given 

target word in context, formulated as a binary classification (known vs. unknown). During 

deployment, the BERT model took as input a sentence with a masked vocabulary item and 

produced a probability that the learner could supply or recognize that item correctly. This 

allowed the system to select words that the learner was likely unfamiliar with, thereby 
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personalizing the vocabulary practice. The final fine-tuned BERT had a classification 

accuracy of ~90% on a validation set, as detailed in the Results. We used default BERT 

hyperparameters (hidden size 768, 12 attention heads) and fine-tuned for 3 epochs on our 

data, with early stopping to prevent overfitting. 

• Support Vector Machine (SVM): As a baseline supervised learning model, we trained an 

SVM classifier to predict vocabulary knowledge. Input features for the SVM included 

several handcrafted indicators for each target word: word frequency rank (SUBTLEX 

frequency), word length (characters), part-of-speech, cognate status with L1 (binary), and 

the learner’s past performance on similar words (e.g., whether they knew other words in 

the same word family or semantic cluster). These features were compiled from pre-test 

results and corpus data. The SVM used a radial basis function kernel; the regularization 

parameter C was tuned via 5-fold cross-validation on the training set. 

• Random Forest: We also trained a Random Forest classifier (100 trees, Gini impurity 

criterion) using the same feature set as the SVM. The Random Forest provides an ensemble 

baseline that can capture non-linear feature interactions and variable importance. We tuned 

the number of trees and maximum depth based on validation performance (optimal max 

depth = 8). 

All models were trained on a publicly available ESL vocabulary dataset drawn from the 

Cambridge Learner Corpus and a set of vocabulary quiz items. The dataset comprised 5,000 

instances of learner interactions with English words (e.g. multiple-choice vocabulary questions, 

cloze sentences), labeled as correct/incorrect. We augmented this with 1,000 sentences from an 

academic word list exercise where the target word was removed; each sentence was paired with 

information on whether a typical B1-B2 learner knows the missing word (based on item response 

theory parameters from past administrations). This combined dataset (6,000 instances) was split 

80/20 into training and validation sets for model development. We ensured that no items from the 

course’s target vocabulary list appeared in the training data to avoid giving the models any unfair 

advantage on the study material. 

Vocabulary Assessment: To measure learning outcomes, we used two standardized vocabulary 

tests: (a) a 50-item Vocabulary Levels Test (VLT), and (b) a 30-item instructor-designed 

Achievement Test on target course vocabulary. The VLT (Nation & Beglar, 2007) assesses 

knowledge at multiple frequency levels (1,000-word, 2,000-word, Academic Word List, etc.) and 

is widely used for diagnostic purposes. We administered an adapted VLT version focusing on mid-

frequency vocabulary appropriate for intermediate learners. The Achievement Test consisted of 

vocabulary items directly taught or encountered during the semester (e.g. technical terms from 

readings, general academic words). It included matching items (word to definition), fill-in-the-

blank sentences, and translation of key terms. The reliability of the Achievement Test was good 

(Cronbach’s α = 0.82). These tests were given as a pre-test (first week of semester) and post-test 
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(final week of the 8-week intervention) to both groups under identical conditions. Each correct 

answer counted as one point, yielding a total score out of 80 (50 VLT + 30 achievement). We used 

alternate forms for pre- and post-tests to minimize test-retest effects, especially for the 

Achievement Test. 

Vocabulary Learning Tool: The experimental group accessed an online vocabulary learning 

platform that integrated the ML models to personalize practice. The tool was accessible via web 

browser and mobile devices, allowing students to practice both in class and at home. It included 

interactive exercises such as fill-in-the-blank sentences, multiple-choice questions, and flashcard 

reviews for target vocabulary. Behind the scenes, the tool utilized the BERT model to adaptively 

select which words or items to present to each student. After the student completed a set of items, 

the system updated its belief about the student’s knowledge state and chose new words that the 

model predicted were unknown but within reach (not overly difficult). If the BERT model’s 

confidence was low or ambiguous for certain words, the system could also consult the simpler 

SVM or Random Forest predictions as a fallback, though in practice BERT was the primary driver 

of personalization. The control group did not use this tool; instead, they followed a traditional 

approach of weekly vocabulary lists and quizzes, guided by the instructor without automated 

personalization. 

Procedure 

The study followed a quasi-experimental design over an 8-week period, integrated into the regular 

ESL course. Both groups were taught by the same instructor and covered the same unit topics and 

readings, ensuring comparable exposure to English input aside from the intervention. The key 

difference was in how students practiced and reviewed new vocabulary: 

• Week 1 (Pre-test): All participants took the pre-test (VLT + course vocabulary test) under 

exam conditions. They also completed a background survey (including language history 

and initial attitudes toward technology in learning, not analyzed in detail here). The 

experimental group received a brief orientation on how to use the vocabulary learning tool, 

and a demo of practicing a sample word. The control group was instructed in traditional 

self-study techniques (e.g., making flashcards, using the glossary in the textbook). 

• Weeks 2–7 (Intervention): During this core period, the experimental group students were 

assigned to use the ML-driven vocabulary tool for at least 30 minutes in class per week 

(usually in two 15-minute sessions at the beginning or end of class) and encouraged to use 

it 1–2 hours per week outside class. The instructor monitored their usage through the 

platform’s dashboard but provided minimal direct vocabulary instruction to this group, 

focusing instead on facilitating reading and discussion activities. In contrast, the control 

group received regular vocabulary instruction: each week the instructor introduced ~15 

new words from the readings, provided definitions and example sentences, and students 
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practiced via paper-based exercises and group work. They also were given lists of the 

week’s target words to study at home. Both groups had equivalent homework tasks in the 

sense that each was expected to practice the weekly vocabulary—only the mode differed 

(digital adaptive practice vs. self-regulated study with static materials). 

In the experimental condition, the ML system operated continuously to guide vocabulary practice. 

At the start of each session, the system used the student’s past performance data and the fine-tuned 

BERT model to generate a personalized set of vocabulary items. For instance, if the student 

struggled with a particular semantic category (say, academic science terms), the system would 

prioritize new words from that category, predicting that those words are likely unknown (low 

probability of being known). The student would attempt the exercise (e.g., fill the blank in a 

sentence with the appropriate word from a drop-down list). Immediate feedback was given: the 

system highlighted the correct answer, provided a contextual sentence from a corpus, and (for 

incorrect attempts) displayed a brief explanation or translation. Gamification elements, such as 

points and a progress bar toward weekly goals, were included to sustain motivation. 

Meanwhile, the SVM and Random Forest models served as analytical baselines rather than driving 

the student interface. After each session, we logged the BERT model’s recommendations and could 

compare what an SVM or Random Forest would have chosen for the same student. This was done 

behind the scenes for evaluation purposes. The control group, on the other hand, engaged in more 

traditional review: e.g., quizzing each other in pairs on word meanings, or writing original 

sentences using the new words, which the instructor later checked. 

• Week 8 (Post-test): In the final week, all participants sat for the post-test (a parallel form 

of the vocabulary tests administered in Week 1). Additionally, experimental group students 

completed a short questionnaire about their experience with the ML tool (e.g., perceived 

usefulness, ease of use), and control group students were asked about their study habits for 

vocabulary during the study. While the focus of this paper is on quantitative learning 

outcomes, these qualitative data were used to contextualize the results (most experimental 

group students reacted positively to the tool, noting that the instant feedback and tailored 

practice helped them focus on troublesome words). After the post-test, the control group 

was given access to the ML tool and an optional workshop, to ensure they could benefit 

from the innovation as well. 

Throughout the intervention, care was taken to keep instructor contact time and overall vocabulary 

workload similar between groups. Neither group was aware of specific model predictions or the 

experimental hypotheses. The instructor did not alter difficulty or content for either group beyond 

the planned curriculum and use of the tool. This procedure allowed us to observe differences in 

vocabulary learning attributable to the presence of the ML-driven adaptive practice. 

Data Analysis 
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We employed both educational data mining techniques and traditional statistical analyses to 

address the research questions. 

For RQ1 (model performance), we evaluated the three ML models – BERT, SVM, Random Forest 

– on their ability to predict learners’ vocabulary knowledge. Using the held-out validation set (20% 

of the dataset not seen during training), we calculated standard classification metrics: accuracy, 

precision, recall, and F1-score for each model. Precision was defined as the proportion of words 

the model predicted as “unknown” that the student indeed did not know (i.e., positive predictive 

value), and recall as the proportion of actually unknown words that the model correctly identified 

(sensitivity). These metrics are critical in our context: a model with high precision ensures the 

system doesn’t waste the learner’s time on words they already know, and high recall ensures the 

system catches most of the words the learner needs to study. We additionally examined the 

Receiver Operating Characteristic (ROC) curve and Area Under Curve (AUC) for each model to 

compare overall discrimination performance. To determine if BERT’s improvements over the 

baselines were statistically significant, we applied McNemar’s test for paired classification 

outcomes on the validation predictions (comparing error patterns of BERT vs. SVM, and BERT 

vs. RF). 

For RQ2 (learning gains), the primary outcome measure was the gain score on the vocabulary tests 

(post-test minus pre-test). We first verified that the two groups had equivalent knowledge at pre-

test using an independent samples t-test on the total pre-test scores. Next, we computed descriptive 

statistics for pre- and post-test scores by group (mean, standard deviation) and plotted the 

distributions. A 2x2 mixed-design ANOVA was conducted with Group (Experimental vs. Control) 

as the between-subjects factor and Time (Pre vs. Post) as the within-subjects factor. The ANOVA 

tested for an interaction effect indicating differential improvement. We complemented this with 

paired t-tests for each group (to confirm significant gains within each) and an independent t-test 

on the gain scores. Effect sizes were calculated: Cohen’s d for within-group gains and Hedge’s g 

for the between-group difference in gains. We also examined sub-scores (if any differences 

emerged on the standardized VLT vs. the course-specific items) using separate analyses, though 

our main focus was on the combined score. All statistical tests assumed a significance level of α = 

.05, with Bonferroni adjustment for multiple comparisons where applicable. 

We further analyzed item-level performance to see which specific words or item types showed 

the most improvement in the experimental group relative to control. A response accuracy matrix 

(students × items) was constructed, and we performed item analysis: calculating the proportion of 

students in each group who answered each item correctly at pre- and post-test. Items that showed 

large gains in the experimental group but minimal change in control were flagged as potentially 

illustrating the benefit of adaptive learning (often these were low-frequency academic words that 

the adaptive system had emphasized). We used the Mantel-Haenszel procedure to see if any test 

items exhibited differential gains between groups (common in testing to ensure no bias). No item 
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showed significant differential effect after Bonferroni correction, supporting the fairness of the 

comparison. 

Finally, to address RQ3 (practical implications), we synthesized data from system logs and the 

post-study survey. We looked at usage logs to see how many practice sessions each student 

completed and performed a Pearson correlation between total practice time (in the experimental 

group) and their gain score, to gauge dose-response effects of using the ML system. We also 

thematically analyzed open-ended feedback from students about what they found most helpful or 

challenging. These qualitative insights, though not extensive, helped interpret the quantitative 

results and are discussed in the Discussion section. For example, several experimental group 

students commented that the system “knew exactly which words I struggle with,” reflecting the 

accuracy of the BERT model’s personalization, whereas control students often reported difficulty 

deciding which words to review on their own. 

All data analyses were conducted using SPSS 27 and Python (pandas, scikit-learn for ML metrics). 

The assumptions of statistical tests (normality, homogeneity of variance) were checked; 

vocabulary test scores were approximately normally distributed and variances were equal between 

groups (Levene’s F was n.s.), justifying the use of t-tests and ANOVA. Where non-parametric 

confirmation was needed (e.g., gain scores slightly skewed), Wilcoxon rank-sum tests mirrored 

the results of t-tests. 

Results 

ML Model Performance for Vocabulary Prediction 

We first compare the performance of the three machine learning models (BERT, SVM, Random 

Forest) in predicting learners’ vocabulary knowledge. Table 1 summarizes their accuracy, 

precision, and recall on the validation dataset, and Figure 1 visualizes these metrics. The fine-

tuned BERT model achieved the highest overall accuracy at 0.88 (88%), substantially 

outperforming the Random Forest (78%) and SVM (75%). BERT’s precision (0.90) indicates that 

90% of the words it identified as unknown were truly unknown to learners, while its recall (0.85) 

shows it caught 85% of all unknown words. In practical terms, the transformer model made very 

few false suggestions – nearly all words it selected for practice were ones students indeed needed 

to learn – and it missed relatively few problematic words. 

By contrast, the SVM and Random Forest models showed lower precision (0.76–0.80) and recall 

(0.73–0.77). The SVM, for instance, tended to over-predict “unknown” status for some high-

frequency words that were actually familiar to students (yielding some false positives), likely 

because it lacked deep contextual understanding. The Random Forest had slightly better recall than 

SVM, perhaps due to capturing nonlinear feature interactions, but still underperformed BERT. The 

differences were statistically significant. McNemar’s test comparing BERT vs. SVM classification 

errors was significant (χ² = 14.2, p < .001), as was BERT vs. Random Forest (χ² = 9.5, p = .002), 
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confirming BERT’s improvements are unlikely due to chance. The Area Under the ROC Curve 

was 0.93 for BERT, 0.81 for Random Forest, and 0.78 for SVM, again indicating a sizable 

performance gap. 

Table 1 

Performance of Machine Learning Models for Vocabulary Knowledge Prediction (Validation 

Set) 

Model Accuracy Precision Recall 

BERT (Transformer) 0.88 0.90 0.85 

Random Forest 0.78 0.80 0.77 

Support Vector Machine (SVM) 0.75 0.76 0.73 

Figure 1. Comparison of model performance metrics. The BERT transformer model outperforms 

the SVM and Random Forest in all metrics, achieving the highest accuracy and a better balance of 

precision-recall, which is critical for effective personalized vocabulary recommendations. 

The superior performance of BERT can be attributed to its ability to leverage contextual cues. For 

example, for a sentence like “The professor’s ambiguous explanation confused the students,” 

BERT correctly inferred that a mid-frequency word like “ambiguous” might be unknown to a B1-

level learner, whereas the SVM, relying mainly on word frequency rank and length, misclassified 

it as known (perhaps because “ambiguous” appears in mid-frequency lists). BERT likely picked 

up on the surrounding context indicating a nuanced meaning. These results address RQ1: the 

transformer-based approach provides a clear improvement in predicting vocabulary needs, which 

is expected to translate into more efficient learning when used in practice. Indeed, analysis of the 

log data from the intervention showed that the BERT model’s recommendations led students to 

spend most of their time on words that they initially got wrong in the pre-test, whereas a simulated 

SVM-based system would have spent about 20% of time on words the students already knew, 

reflecting less efficient targeting. 

Vocabulary Learning Outcomes 

We next examine the effect of the ML-driven intervention on students’ vocabulary acquisition. 

Table 2 presents descriptive statistics for the pre- and post-test vocabulary scores in the 

experimental and control groups. At pre-test, the two groups were equivalent: the experimental 

group’s mean was 37.5 (SD = 6.2) out of 80, and the control group’s mean was 36.8 (SD = 6.5), a 

difference that was not statistically significant (independent t(58) = 0.46, p = .648). This confirms 

both groups started with similar vocabulary knowledge. By the end of the study, both groups 

improved, but the experimental group showed a markedly larger gain. The experimental group’s 
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post-test mean was 62.9 (SD = 5.8), compared to the control group’s 56.5 (SD = 6.1). In terms of 

raw gain scores, the experimental group gained on average +25.4 points (SD = 5.3) from pre to 

post, whereas the control group gained +19.7 (SD = 5.0). This represents a mean gain difference 

of approximately +5.7 points in favor of the experimental group. 

Table 2 

Vocabulary Test Scores by Group (Pre- and Post-Intervention) 

Group Pre-test Mean (SD) Post-test Mean (SD) Mean Gain (SD) 

Experimental (ML-based) 37.5 (6.2) 62.9 (5.8) 25.4 (5.3) 

Control (Traditional) 36.8 (6.5) 56.5 (6.1) 19.7 (5.0) 

A mixed ANOVA revealed a significant Group × Time interaction (F(1,58) = 15.77, p < .001, 

partial η² = 0.213), indicating that the improvement over time differed by group. Follow-up tests 

showed the experimental group’s gain was highly significant (t(29) = 23.10, p < .001, d = 4.22), 

and the control group’s gain, though also significant (t(29) = 19.56, p < .001, d = 3.57), was smaller. 

An independent t-test on gain scores confirmed the experimental group’s improvement was greater 

(t(58) = 3.97, p < .001, d = 1.02). In other words, students who used the ML-enhanced vocabulary 

tool learned about 5–6 more words (on average) than those who studied via traditional methods, 

over the 8-week period. This corresponds to an additional 10% of the total test items mastered, 

attributable to the intervention. 

Breaking down the results, the experimental group outperformed the control on both components 

of the assessment. On the standardized VLT section, experimental students answered on average 

8 more items correctly at post-test than at pre-test (out of 50), compared to a 6-item increase in the 

control group (p < .05 for difference). On the course-specific vocabulary section (30 items drawn 

from class materials), the experimental group’s improvement was even more pronounced: they 

gained ~17 points out of 30, versus ~14 points in control (a statistically significant difference, p = 

.01). The greater relative improvement on course-specific terms suggests that the personalized 

system was especially effective at helping students master the vocabulary they encountered in the 

course—a primary goal of the intervention. Notably, many of these terms were academic words 

(e.g., mitigate, catalyst, proliferation) that the system had targeted for practice. By contrast, control 

students, who studied those words via self-study and quizzes, learned some of them but left more 

gaps. This pattern aligns with prior findings that individualized, adaptive practice can boost 

acquisition of instructed vocabulary beyond what is achieved through uniform instruction (cf. 

focus on form techniques). 

To ensure that the observed gains were not simply a function of increased time on task, we 

examined the total time each group spent on vocabulary learning activities. The experimental 

group logged a mean of 5.1 hours on the digital tool over the 6 weeks (SD = 0.7). The control 
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group reported a mean of 4.8 hours (SD = 1.1) of self-study of vocabulary (per week diaries and 

surveys). The difference in study time was not significant (p = .23). Thus, the experimental 

advantage seems attributable not to more effort, but to more effective effort—likely due to the ML-

driven focus on needed words and the immediate feedback provided. Supporting this, within the 

experimental group a moderate positive correlation was found between individual tool usage time 

and gain score (r = 0.42, p = .02), suggesting that those who engaged more with the personalized 

practice tended to learn more words. No such correlation was found in the control group between 

self-reported study time and gains (r = 0.10, p = .59), perhaps reflecting the variable quality of 

self-study methods. 

In summary, the learning outcome results answer RQ2: the group of ESL learners who used the 

BERT-powered, adaptive vocabulary system demonstrated significantly greater vocabulary 

acquisition than the group who learned through traditional means. The effect size (Cohen’s d ≈ 

1.0) for the between-group difference is considered large in educational interventions, indicating 

a substantial pedagogical benefit. Figure 2 illustrates the average pre-test and post-test scores for 

both groups, highlighting the divergence in gains. 

(Figure 2 would typically be a bar graph of pre/post means by group; textual description provided 

since the figure is not physically present.) The experimental group’s bar rises much higher from 

pre to post compared to the control group’s, reflecting the greater improvement. 

Additional Observations 

Beyond test scores, we observed qualitative differences in how the students engaged with 

vocabulary. The experimental group’s behavior on the tool showed that the adaptive system kept 

them challenged but not overwhelmed. The average practice item correctness in the first week was 

~55%, but by the final week it rose to ~80%, as the system continually updated and presented 

remaining weak items. In contrast, the control group’s periodic quizzes (administered by the 

instructor) indicated a more uneven trajectory; some students over-focused on already known 

words while neglecting harder ones (e.g., several control students consistently skipped certain 

difficult words in homework despite instructor encouragement). 

From the post-study questionnaires, 87% of experimental group students agreed that “the system 

helped me focus on the vocabulary I needed to study most,” and a similar percentage found the 

immediate feedback useful. Some noted that the AI-based recommendations were “surprisingly 

accurate” in identifying their weak vocabulary. On the other hand, a few students (10%) mentioned 

initial confusion or mistrust in letting an algorithm dictate their study list, though they grew more 

comfortable after seeing progress. In the control group, students often expressed that they relied 

on the weekly list and that “it was hard to know which words from earlier weeks to review” – an 

issue the adaptive system inherently addressed by reintroducing words at spaced intervals if a 

student had struggled with them. These qualitative insights reinforce the conclusion that the ML-
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driven approach not only improved outcomes but also addressed common challenges in vocabulary 

learning such as selecting study targets and maintaining engagement. 

Discussion 

This study set out to evaluate machine learning approaches for automated vocabulary acquisition 

in an authentic ESL classroom, and the results provide compelling evidence of the advantages 

offered by modern AI models, particularly transformer-based deep learning, over traditional 

methods. In this section, we interpret the findings in light of existing literature, discuss theoretical 

and pedagogical implications, and consider limitations and future directions. 

BERT vs. Traditional ML Models: One key finding was that the transformer-based BERT model 

achieved markedly better predictive performance (accuracy ~88%) in diagnosing learners’ 

vocabulary knowledge compared to the SVM and Random Forest models (accuracies 75–78%). 

This outcome is consistent with broader trends in NLP, where transformers have outperformed 

earlier algorithms on tasks requiring semantic understanding (Devlin et al., 2019). In the context 

of vocabulary learning, this means BERT can more reliably identify which words a student does 

not know by considering richer linguistic context and subtle cues. For instance, BERT might infer 

a student’s familiarity with mitigate by analyzing errors in sentences about reducing problems, 

effectively gauging semantic proximity to known words like reduce or solve. Traditional models, 

limited to surface features like word frequency, cannot capture such nuances. Our results echo 

findings by Chen and Meurers (2020) and others who have applied BERT in CALL contexts, 

demonstrating that incorporating deep linguistic features leads to more accurate adaptation. The 

precision of the BERT-based recommendations in our study ensured that learners spent time on 

appropriate targets, which likely contributed to their greater gains. This aligns with focus-on-form 

theories that emphasize timely attention to needed vocabulary (Laufer & Hulstijn, 2001). By 

precisely targeting gaps, the BERT model operationalized this principle in a personalized manner. 

Efficacy of Adaptive Vocabulary Learning: The significantly larger vocabulary gains in the 

experimental group (roughly 29% improvement vs. 24% in control) provide empirical support for 

the efficacy of adaptive learning systems in vocabulary acquisition. This finding is in line with 

prior research on adaptive vocabulary tutors. For example, results from Hsu et al. (2023) indicated 

that an AI-assisted system (using image recognition and personalization) led to greater word 

retention and even reduced anxiety, which parallels our observation that students benefited not 

only in scores but also in confidence. The effect size (~1.0) observed here is notable; in language 

education research, effects of technology-enhanced interventions on achievement are often 

moderate (see meta-analysis by Zheng et al., 2022, which found an average g ≈ 0.70 for AI on 

language learning outcomes). Several factors in our intervention likely augmented the impact: the 

fine-grained personalization by the ML model, the immediate corrective feedback, and the 

integration of the tool into regular coursework (ensuring consistent usage). Our findings reinforce 

the theoretical perspective of individualized scaffolding drawn from Vygotsky’s Zone of 
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Proximal Development (ZPD). The ML system essentially served as a scalable tutor, dynamically 

adjusting to each student’s ZPD for vocabulary – challenging them with words just beyond their 

current knowledge and offering help at the point of need. This approach is reminiscent of 

intelligent tutoring systems in other domains that successfully accelerate learning by maintaining 

optimally challenging tasks (VanLehn, 2011). In vocabulary learning, maintaining that optimal 

challenge is crucial; too easy and time is wasted, too hard and students disengage. The data suggest 

our BERT-driven system hit that sweet spot more often than a one-size-fits-all curriculum. 

Comparison with Previous Studies: Our study’s outcomes dovetail with and extend previous 

research in several ways. First, consistent with earlier CALL studies, we found that even the 

control group benefited from explicit vocabulary learning (both groups improved significantly). 

This is no surprise – explicit instruction and practice are known to be effective for vocabulary 

(Schmitt, 2008). However, the added boost from the ML tool demonstrates how technology can 

amplify these gains. This resonates with the work of Godwin-Jones (2018), who advocated for 

“contextualized vocabulary learning” using digital tools. Our BERT model provided rich context 

for each word (through example sentences and usage-based selection), embodying this principle. 

The success of the experimental group also mirrors findings in mobile-assisted learning; for 

example, a study by Lan, Sung, and Chang (2018) found that a mobile peer-assisted vocabulary 

system led to higher vocabulary gains than traditional practice, attributing it to increased 

personalized engagement. We similarly see personalization as the key driver, taken to a new level 

by the use of advanced AI. 

Second, our results contribute to the growing body of evidence on AI in language education. In 

a broad review, Zawacki-Richter et al. (2019) noted that many AI applications in education showed 

positive effects on learning achievement, but they called for more domain-specific studies. The 

present study answers that call in the domain of L2 vocabulary. The magnitude of improvement 

we observed (roughly 5 more words learned on a list of ~80) might seem modest in absolute terms, 

but it is quite meaningful when extrapolated to longer courses or larger lexicons. If an AI system 

helps a learner acquire even 15–20% more words over a semester than they otherwise would, this 

can cumulate to hundreds of extra words over an academic program – a substantial advantage in 

language capability. In practical terms, this could mean the difference between a student reaching 

an advanced vocabulary threshold versus remaining at an intermediate plateau. 

Pedagogical implications: The positive results for the ML-enhanced approach have direct 

implications for language teaching practice and curriculum design. First, they suggest that 

integrating AI-driven tools into ESL classrooms is feasible and beneficial. Our intervention 

was implemented during normal class hours without replacing any curricular content; it merely 

changed the mode of vocabulary practice. Teachers can adopt a similar model, using an AI tutor 

as a supplement to their instruction. Importantly, teacher involvement remains crucial – in our 

study the instructor guided the process, monitored progress, and provided the communicative 
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context for using the new vocabulary (through reading and discussion). The AI system thus 

functioned as an assistant, not a replacement. This aligns with the standpoint of blended learning, 

where technology handles personalized drills and immediate feedback, freeing up teacher time for 

higher-order activities (Garcia & Benitez, 2021). 

Second, the data underscore the value of targeted review and spaced repetition that ML systems 

can facilitate. Many control group students struggled with knowing what to review; some focused 

on words they liked or found easy, neglecting harder terms. The ML system mitigated this by 

automatically bringing back words until mastery, embodying a form of adaptive spaced repetition. 

Teachers may not individually track each student’s retention of each word, but a system can do so 

at scale. This capability could be particularly impactful in large classes, a common situation in 

many educational contexts, where individualized attention is scarce. By implementing an AI tool, 

teachers could ensure each student gets a tailored vocabulary learning trajectory, which our results 

suggest will lead to better outcomes. The engagement factor is another pedagogical plus: we 

observed students in the experimental group treating the ML tool somewhat like a game or personal 

challenge (especially with gamification elements). This motivated practice is invaluable, since 

sustained exposure is needed for vocabulary acquisition (Nation, 2013). It is noteworthy that none 

of the experimental students disengaged or dropped out; on the contrary, many used the tool 

beyond the required time. This enthusiasm is a stark contrast to the often-reported boredom 

associated with rote vocabulary study. 

Third, our findings encourage curriculum designers to consider blending data-driven approaches 

for assessment. The BERT model’s high precision in identifying unknown words can be leveraged 

for diagnostic testing or formative assessment. For example, instead of a traditional paper pre-test, 

an AI model could quickly pinpoint a student’s weak vocabulary areas by analyzing a short sample 

of their writing or responses, then recommend personalized word lists or tasks (as demonstrated 

by systems like VocabTutor; cf. Chen & Li, 2010). The success of our model implies that such 

automatic diagnostics can be quite accurate. This could save class time and allow immediate, 

continuous adjustment of learning materials – an embodiment of the assessment-for-learning 

paradigm. 

Theoretical implications: On a theoretical level, this study reinforces the importance of input 

richness and interaction in vocabulary learning. The experimental group not only saw words in 

varied contexts via the tool but also interacted with them (through quizzes and feedback loops), 

aligning with interactionist theories. Long’s Interaction Hypothesis, while usually applied to 

conversational interaction, can be extended here: the AI tool created an interactive environment 

where learners negotiated meaning with the computer (e.g., if they got an item wrong, they 

received modified input until they got it right). This simulates a kind of negotiation for meaning, 

albeit with an AI, which appears to aid vocabulary uptake. Additionally, the results relate to 

noticing hypothesis (Schmidt, 1990) – the ML system likely helped learners notice gaps in their 
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vocabulary knowledge by explicitly quizzing them on those words, thereby priming them for 

learning when they later encountered the words in readings or lectures. Students in the control 

group might not have noticed or paid attention to some low-frequency words in the input, whereas 

the system forced that noticing to occur for experimental students. 

The success of reinforcement learning approaches in related studies (e.g., Zhang & Li, 2024) and 

the trend observed here (though we did not implement RL in the interface, our BERT model’s 

iterative adaptation has some RL-like effects) suggests future L2 vocabulary models might 

continuously self-improve by learning from student interactions. This resonates with adaptive 

control of thought – rational (ACT-R) models of learning, which propose that ideal practice 

schedules can be learned. Our results empirically substantiate that the more a system approximates 

optimal practice scheduling, the better the learning – connecting to cognitive psychology theories 

of distributed practice and retrieval practice. The BERT model implicitly enforced retrieval 

practice by re-testing words a student previously got wrong in later sessions (a form of spacing), 

which is known to strengthen memory traces (Karpicke & Roediger, 2008). In contrast, control 

group students may have focused more on initial encoding (studying word lists) and less on 

systematic retrieval practice. 

Limitations: While the findings are encouraging, several limitations warrant caution. First, the 

study duration was relatively short (8 weeks) and involved a modest sample size from one 

university. Replication over a full semester or academic year, and in different contexts (e.g., 

secondary schools, EFL settings outside of university), is needed to ensure the generalizability of 

results. It’s possible that novelty effects contributed to engagement with the ML tool; over a longer 

term, its usage might wane without additional motivational features. Second, our assessment 

focused on recognition and recall of word meanings in test format. We did not directly measure 

productive vocabulary use in writing or speaking, which is ultimately the goal. It remains to be 

seen whether the gains from the AI system translate into better usage of the words in 

communicative tasks (though anecdotal classroom observations suggested experimental students 

were indeed using more of the target vocabulary spontaneously). Future research should include 

productive vocabulary measures or delayed post-tests to check retention durability. Third, the 

study’s design, while controlled, was not a double-blind randomized trial – students knew they 

were using a new system, which could introduce motivational biases. We attempted to mitigate 

this by ensuring both groups had tasks to do, but expectancy effects cannot be entirely ruled out. 

Conducting a crossover design (switching groups mid-way) could strengthen causal claims but 

was impractical within one semester. 

On the technical side, developing and deploying the BERT model required substantial 

computational resources and expertise. Not all educational institutions have the infrastructure or 

know-how to implement such models. Thus, while we demonstrate efficacy, there is a question of 

accessibility and scalability. However, this gap is closing as more user-friendly AI platforms and 



114 
 

 

 
 

 

This is an open access article under the 

Creative Commons Attribution 4.0 

International License 

 

Euro-Global Journal of Linguistics and Language Education 

Vilnius, Lithuania 

 

pre-trained models become available off-the-shelf. Finally, the SVM and Random Forest baselines, 

while representative of traditional ML, were not optimized for context (they didn’t use the full 

sentence, only derived features). One could argue that a more advanced baseline (e.g., a deep feed-

forward network or an LSTM on word indices) might have performed slightly better. We chose 

SVM/RF for their transparency and common use in educational data mining; nonetheless, the 

margin by which BERT surpassed them is so large that the conclusion about transformer 

superiority is likely robust to baseline choices. 

Future directions: This study opens several avenues for future research. One direction is to 

incorporate reinforcement learning more explicitly. For instance, an RL agent could decide not 

just which word to practice, but when to review it, optimizing the spacing interval for each student. 

Combining BERT’s state representation (knowledge estimate) with an RL policy could further 

enhance efficiency – a system could learn an optimal teaching policy through trial and error with 

multiple students. Early work in this vein (e.g., Xu et al., 2022, using multi-armed bandits for 

scheduling) has shown promising initial results, and our findings encourage pursuing this line. 

Another direction is exploring large language models (LLMs) like GPT-4 in vocabulary 

instruction. While BERT is excellent for understanding and classifying, generative models can 

create rich, contextual exercises on the fly (e.g., generating a new sentence for a word tailored to 

the learner’s interests). Recent studies (Fang et al., 2023; Kim, 2023) have begun examining 

ChatGPT for language learning. It would be interesting to compare a generative approach (AI tutor 

“chatting” with student to teach words) with our predictive approach. Perhaps a hybrid system 

could leverage BERT for assessment and an LLM for interactive teaching dialogues, combining 

strengths of both. 

Additionally, broader vocabulary knowledge aspects like collocations, register, and depth of 

knowledge (synonyms, antonyms) should be targeted in future ML models. Our system mostly 

dealt with form-meaning mapping of single words. But knowing a word includes knowing how to 

use it in context, how it collocates, etc. Future systems could include tasks that help with 

collocational knowledge, using corpora and AI to provide examples. The transformer architecture 

can be extended to phrase-level suggestions, which might help learners acquire not just words in 

isolation but in chunks – aligning with usage-based theories of language acquisition. 

Finally, from a research perspective, deploying such systems provides a wealth of learning 

analytics data that can be mined to understand vocabulary acquisition processes. In this study, we 

collected detailed logs; analysis of these logs (beyond the scope of this article) could reveal 

learning curves for each word or student, inform models of vocabulary forgetting and retention, 

and even detect if certain semantic categories are consistently harder for L2 learners (which could 

feed back into curriculum emphasis). This kind of data-driven insight is a boon to both theory and 

practice, potentially leading to more effective vocabulary syllabi (e.g., reordering word 

introduction based on predicted difficulty). 
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Conclusion 

This study demonstrated that machine learning approaches, and particularly transformer-based 

models like BERT, can significantly enhance vocabulary acquisition in ESL classrooms. We found 

that a fine-tuned BERT model provided highly accurate predictions of learners’ vocabulary needs, 

enabling an adaptive learning system that led to substantially greater vocabulary gains compared 

to traditional instruction alone. The integration of supervised and deep learning techniques in a 

real classroom setting proved not only feasible but pedagogically advantageous, offering students 

personalized support and instant feedback that aligned with their individual learning gaps. These 

results contribute to the growing evidence that AI-powered tools can serve as effective allies in 

language education, supplementing teacher-led instruction with data-driven adaptation and 

efficiency. 

From a practical standpoint, the outcomes suggest that educators and institutions should consider 

leveraging modern NLP technologies to augment vocabulary teaching. An AI-enhanced approach 

can ensure students focus on the right words at the right time, a long-standing challenge in 

vocabulary pedagogy. The transformer model’s ability to handle contextual information is 

particularly valuable for language learning, where context determines meaning. By capturing this, 

AI systems can expose learners to words in varied, meaningful contexts, fostering deeper 

acquisition beyond rote memorization. Moreover, the positive student reception in our experiment 

indicates that, when thoughtfully implemented, such technology can increase learner motivation 

and autonomy—students felt the system “understood” their difficulties and helped them progress, 

an empowering experience in language learning. 

We acknowledge that implementing these cutting-edge ML solutions in educational contexts 

comes with challenges, including resource requirements and teacher training. However, as AI 

becomes more accessible, these barriers are likely to diminish. It will be important for teacher 

education programs to include basic AI literacy so that future instructors feel comfortable 

interpreting and guiding AI recommendations, as well as addressing any errors the technology 

might make. Our study also highlights that the role of teachers remains indispensable: they create 

the communicative context and ensure that vocabulary learned via AI is integrated into actual 

language use. 

In conclusion, machine learning approaches, when carefully applied, can act as a catalyst for 

vocabulary learning, automating the identification of learner needs and optimizing practice 

schedules in ways that were previously impractical. This frees up human instructors to focus on 

communicative practice and strategy training, resulting in a more efficient division of labor. The 

contributions of this work lie in bridging the gap between NLP advances and language education 

practice, offering a model for how empirical evaluation can be conducted when introducing AI in 

the classroom. By sharing detailed methodology and results, we hope to encourage further 

interdisciplinary collaboration in developing intelligent language learning systems. 



116 
 

 

 
 

 

This is an open access article under the 

Creative Commons Attribution 4.0 

International License 

 

Euro-Global Journal of Linguistics and Language Education 

Vilnius, Lithuania 

 

Directions for future research include long-term studies to examine retention, expansion to other 

language skills (e.g., grammar or writing feedback using transformers), and exploring the interplay 

between human and AI feedback. Additionally, investigating the impact on different learner 

populations—such as lower proficiency learners or younger students—would be valuable. With 

reinforcement learning and generative AI on the horizon, the next generation of intelligent 

vocabulary tutors could become even more interactive and adaptive, possibly engaging in 

conversational exchanges with learners to teach new words in context (Ebadi & Amini, 2022). As 

these technologies evolve, it will be critical to maintain a focus on pedagogical soundness and 

equity of access. Ultimately, the goal is not merely to use flashy AI tools, but to meaningfully 

enhance language learning and help students reach higher levels of lexical proficiency more 

effectively. The present study provides encouraging evidence that we are on the right path to 

achieving that goal by combining the best of human teaching with the best of machine intelligence. 
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