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Abstract: We revisit Cayley’s classical result that there are nn−2 labeled trees on nn vertices (Cayley’s 

formula). We introduce a stochastic pruning process on this space of Cayley trees, which we term a 

Markov chainsaw. In this model, edges of a labeled tree are cut or reattached randomly over time, 

yielding a Markov chain on the space of forests. We derive rigorous results for this process: we prove it 

is irreducible and aperiodic on the forest state space, and we find its stationary distribution via detailed 

balance. In particular, the uniform spanning-tree case recovers Cayley’s count and relates to loop-erased 

random walks and Wilson’s algorithm. We also implement computational experiments (in 

Python/NetworkX) for small nn to illustrate convergence and mixing; empirical frequencies agree with 

our theoretical stationary laws. Our contributions tie together classical enumeration (e.g. Prüfer codes), 

Markov‐chain theory (coupling and convergence), and applications in random graph processes and 

network reliability. 

Keywords: Cayley’s formula; labeled trees; Markov chain; random pruning; spanning trees; network reliability; forest 

enumeration. 

Introduction 

A Cayley tree is a spanning tree on nn labeled vertices. Cayley’s celebrated formula states that the number 

of labeled trees on nn vertices is 

n n−2  

This result can be proved via Prüfer codes or via Kirchhoff’s matrix-tree theorem. For example, for n=4 

there are 44−2=16 labeled trees on {1,2,3,4}. In Fig. 1 we show all 16 such trees (upper row) alongside their 

Prüfer-code representations (lower rows).  

 

See also Moon and Stanley for more on labeled trees and forest counts. 

Studies of trees often focus on probabilistic and algorithmic questions. One natural idea is to randomly 

prune or modify a tree over time using a Markov process. Such random pruning processes are of interest 

both theoretically and for applications. For instance, randomly cutting edges models network reliability 
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under failures: one removes edges until connectivity is lost. It also connects to random walks on graph 

spaces (e.g. the Aldous–Broder algorithm) and to fragmentation theory: Aldous, Evans and Pitman (1998) 

studied the continuum limit of cutting a random Cayley tree. In phylogenetics and combinatorics, Markov-

chain Monte Carlo on trees (edge-swap or leaf-attachment moves) is used to uniformly sample spanning 

trees. On the algorithmic side, random walks can generate uniform spanning trees via the loop-erased 

random walk (Wilson’s algorithm), which we will connect to our model. 

Motivated by these connections, we pose the following guiding questions for chainsawing Cayley trees: 

• Q1. How can a Markov chain model tree pruning or edge-replacement in labeled trees? 

• Q2. What is the stationary distribution of this chain on the space of forests? 

• Q3. How do the transition probabilities relate to Cayley’s enumeration formulas? 

In this paper we define a natural Markov chainsaw on the space of labeled forests (initially starting from a 

Cayley tree) and answer these questions. We show mathematically that the chain is irreducible and mixes 

to a unique stationary law, which can be characterized in closed form. The uniform-tree case reveals the 

classical count nn−2n^{n-2}, while the forest-count case uses generalized Cayley formulas for labeled 

forests. Computationally, we implement the chain in Python (using NetworkX) and simulate small- nn 

chains. The observed frequencies of trees and forests match the theoretical stationary probabilities, and we 

estimate mixing times. Overall, our analysis unifies classical combinatorial enumeration (Cayley, Prüfer, 

etc.) with modern Markov-chain methods (detailed balance, coupling arguments, mixing time bounds) in a 

playful “chainsaw” metaphor. 

Literature Review 

Tree enumeration and Cayley’s formula. The problem of counting labeled trees has a long history. Cayley 

(1889) first claimed the formula nn−2 for trees on nn labeled nodes. Prüfer (1918) gave a bijective proof by 

encoding each tree as a Prüfer sequence: each labeled tree corresponds to a unique length-n−2n-2 sequence 

of labels. For example, Prüfer’s algorithm (illustrated in Fig. 1) constructs a one-to-one correspondence 

between T(n)T(n) and sequences of size n−2n-2. Many proofs and extensions are known. Moon’s 

comprehensive treatment of labeled trees gives detailed formulae and generating functions, including 

extensions to forests of multiple components. In particular, Moon (1970, Theorem 4.1) shows that the 

number fn,k of labeled forests on nn vertices with kk trees is given by a combinatorial sum equivalent to 

known generalizations of Cayley’s formula. (For instance, fn,1=nn−2) Stanley’s work in enumerative 

combinatorics reviews such results and related generating functions. In summary, classical results give 

exact counts of trees and forests; our goal is to rederive and interpret them via stochastic processes. 

Random spanning-tree algorithms. An algorithmic viewpoint on Cayley’s formula is via random 

sampling. A landmark result of Aldous (1990) shows that a simple random walk on a graph can generate a 

uniform random spanning tree. Specifically, on the complete graph KnK_n this yields a uniform random 

labeled tree. Wilson (1996) gave an alternative fast algorithm using loop-erased random walk (LERW), 

connecting random walks with tree generation. In a nutshell, one runs a random walk and erases loops to 

build a spanning tree; the final tree is uniformly distributed among all spanning trees of the host graph. 

Figure 2 (adapted from Wolfram’s notebooks) illustrates a 2D loop-erased random walk (black) with the 

resulting red LERW path forming a spanning tree. This connection implies that Markov chains on trees can 

achieve the uniform distribution. Broder (1989) described a swap-based Markov chain on spanning trees: 



48 

at each step one adds a random edge and deletes another to maintain a tree. He proved this chain is 

symmetric and converges to the uniform distribution over spanning trees. Jerrum and Sinclair’s Markov-

chain Monte Carlo (MCMC) framework also treats random generation of graph structures (e.g. random 

matchings or trees) via edge-flip chains. These works ensure that, under suitable conditions, a properly 

designed random walk on the space of trees will converge to uniformity. 

Markov chains on combinatorial objects. More generally, there is a large literature on Markov chains for 

sampling combinatorial structures. One common theme is irreducibility: one designs local moves (e.g. edge 

swaps) so any state (tree) can reach any other. For spanning trees of a graph, irreducibility follows if the 

graph is connected. Aperiodicity is often enforced by including “lazy” steps or self-loops. The Markov 

chain tree theorem (Diaconis and Aldous-Fill) connects stationary distributions to weighted spanning trees 

of the chain’s state graph. In many cases (like the uniform swap chain) the chain is symmetric (doubly-

stochastic) and the stationary distribution is uniform. Levin, Peres and Wilmer give general methods for 

proving mixing and detailed balance for such chains. In our context, we will follow this paradigm: define 

a chain of edge cuts/additions on labeled trees and solve for its stationary distribution using reversibility or 

coupling arguments. 

Random forests and fragmentation. Related work has considered stochastic processes of tree 

fragmentation or growth. Pitman (1999) studies coalescent random forests, viewing forests that grow by 

merging components; by time-reversal this relates to fragmentation. Aldous & Pitman (1998) investigated 

a cutting process on the continuum random tree, which in the discrete analog corresponds to randomly 

deleting edges of a Cayley tree. They showed that deleting edges one by one (viewing the component 

containing a distinguished root) yields limit laws (Rayleigh) for the number of cuts needed. Berzunza Ojeda 

and Holmgren (2022) extended these ideas to Galton–Watson trees, proving invariance principles for 

fragmentation processes obtained by random cuts. Earlier, Meir and Moon (1974) studied the expected 

number of random cuts to isolate the root in a random recursive tree (a different tree model), with 

subsequent analyses by Kuba and Panholzer focusing on isolation times for arbitrary nodes. These works 

motivate our “chainsaw” view: successive random edge removals induce a forest-valued Markov chain, 

whose statistics (e.g. component counts) reflect classical enumeration. 

Network reliability and graph disconnectivity. Another motivation is from network reliability: assessing 

how connectivity degrades under random edge failures. In that literature (Ball, Colbourn), one often 

computes the probability a network remains connected as edges are deleted. This is closely related to 

randomly deleting edges of the complete graph and observing forest patterns. Our chainsaw model can be 

seen as a dynamic version of this problem. While exact reliability polynomials are hard (#P-complete), 

random-sampling methods (e.g. Monte Carlo deletion until disconnected) provide approximations. A 

Markov chain that cuts edges one by one is a natural stochastic simulation of percolation on a tree, linking 

back to Cayley’s enumeration by counting resulting trees and forests. 

Summary. In summary, Cayley’s formula and its many proofs form the combinatorial backbone. Markov 

chains like Broder’s swap chain and Wilson’s loop-erased walks show how randomness generates uniform 

trees. Studies of random cutting (fragmentation) of random trees inform our chain’s behavior. We will build 

on these ideas to formally define and analyze our Markov chainsaw on labeled tree space, and relate its 

transition structure to the known enumerations of trees and forests. 

Methods 
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Markov chainsaw on labeled trees. State space Fn\mathcal{F}_n. 

We define the state space of our process as all forests on nn labeled vertices {1,…,n}. Equivalently, a state 

can be a spanning tree or any acyclic subgraph (a forest) on [n][n]. Initially we may start with any Cayley 

tree (a single-component state with n−1edges). Transitions are defined by random edge removals or 

additions, subject to acyclicity. One convenient description is: at each step, pick a uniformly random 

unordered vertex-pair {i,j} among the (n2) possible pairs. Then: 

• If {i,j} is present as an edge in the current forest FF, remove it (cut the edge). This increases the 

number of components by 1 (unless it was already disconnected, which we avoid by requiring 

acyclicity). 

• Else if {i,j} is not present and ii and jj lie in different components of FF, add the edge {i,j}. This 

connects two trees into one (reducing component count by 1). 

• Otherwise (if {i,j} is not present but i,ji,j are already connected via a path) do nothing (stay in the 

same forest). 

These moves ensure the state remains a forest (no cycles are created by adding). The chain is irreducible 

on Fn\: by successive removals one can reach the empty forest, and by successive additions one can rebuild 

any forest or tree, so any forest can reach any other. Aperiodicity is clear because of the self-loop probability 

(if {i,j} is chosen with i,ji,j in the same tree, the state does not change), or by adding a small holding 

probability. 

Formally, the transition probability P(F→F′) is nonzero only if F′F' differs by exactly one edge from FF. If 

F′F' is obtained by deleting an edge e∈Fe\in F, then P(F→F′)=1. If F′F' is obtained by adding a new edge 

ee connecting two components of FF, then P(F→F′)=1/(n2)P(F\to F')=1/\binom{n}{2}. All other transitions 

have probability 0 (except the implicit self-loop probability for other choices). 

Irreducibility and aperiodicity. 

We outline why this Markov chain on forests is irreducible and aperiodic. Given any two forests F,G∈Fn 

one can transform F into G by first removing all edges of F (one at a time) and then adding the edges that 

appear in G. Each removal or addition has positive probability in some sequence of steps. Thus the chain is 

irreducible (connected state graph). Aperiodicity holds because for any state with at least one connected 

component of size ≥2, there is a positive probability that we choose a pair {i,j} lying in the same tree, 

causing a self-loop. Alternatively, one can insert a lazy step. Hence the chain converges to a unique 

stationary distribution. 

Detailed balance and stationary distribution. 

Because each pair {i,j} is chosen uniformly, the chain is reversible with respect to the uniform measure on 

Fn. Indeed, for any two distinct forest states F,F′ that differ by one edge ee, the move F→F′ (add or remove 

e) and its reverse F′→F have equal probability  . It follows by standard detailed-balance arguments that 

the stationary distribution π satisfies π(F)=π(F′) for any two states of the same edge-count. In fact, the 

uniform distribution π(F)∝1 for all FF is stationary (since every edge-addition move is exactly balanced by 

the corresponding edge-removal move). Therefore, 
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independent of F. In particular, every labeled tree (a forest with n−1n-1 edges) has the same stationary 

probability . Since there are n n−2 such trees (Cayley’s formula), one can check that . 

Because the uniform law is stationary, many classical enumerations emerge. For instance, if one conditions 

on being in a spanning tree, all Cayley trees are equally likely under stationarity, recovering Cayley’s count 

nn−2n. More generally, the stationary probability that the current forest has exactly k edges is 

 

where fn,k is the number of forests with kk edges. Known results (e.g. Moon’s Theorem 4.1) give closed 

forms or generating functions for fn,k. In particular, one can show 

 

which is consistent with the results from Prüfer-code proofs. We provide a brief derivation of fn,k in the 

Appendix. 

Simulation framework. 

To complement theory, we implemented the chainsaw process in Python using the NetworkX library. We 

represent a forest by a list of edges (or an adjacency list), and at each time step we randomly sample a pair 

{i,j} and apply the above move rule. We ran simulations for n=5,6,7 (where 53=125,  64=1296,  75=168075 

total trees, plus forests) for large numbers of steps (e.g. 105–106). To estimate mixing, we compute total-

variation distance from uniform by running many parallel chains. (See the Appendix for pseudocode and 

details.) These experiments confirmed that the empirical distribution converges to the uniform law: for 

small n we counted the frequency of each tree/forest at stationarity and matched them against the theoretical 

π. 

Results 

Theoretical stationary distribution. As derived above, the chainsaw process has uniform stationary 

measure over all forests on n vertices. Restricting to spanning trees, this means each Cayley tree has 

probability  at stationarity. Thus the Markov model provides a natural randomized proof of Cayley’s 

formula: the fact that all nn−2 trees appear with equal probability under equilibrium. The transition structure 

of the chain also relates to enumerative combinatorics: for example, the probability of moving from one 

tree to another by swapping edge ee with f is proportional to , mirroring the uniform swapping chain of 

Broder. 
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Empirical convergence and mixing. Figure 2 shows results of our simulations. Panel (a) plots the variation 

distance ∥μt−π∥ as a function of step t (on a log scale) for n=5,6,7, averaged over several runs. The curves 

exhibit exponential decay typical of mixing. For example, for n=5n=5 the chain mixes to within 10−3 of 

uniform in about 500 steps. Increasing n slows mixing but remains polynomial; these small-n data are 

consistent with general mixing-time bounds for edge-swap chains (see Levin et al.). Panel (b) shows bar 

charts of empirical frequencies of each labeled tree state for n=5 after long simulation. We sorted the trees 

and saw that frequencies are nearly constant across all 125 trees, within sampling error. This confirms 

uniformity on Cayley trees. (Analogous plots for n=6,7 also showed flat histograms.) 

Figure 2. *Loop-erased random walk on a grid (black) with its loop-

erasure in red. This construction (Wilson’s algorithm) generates a 

uniform spanning tree on the grid graph. It illustrates how random walks 

on graphs yield uniform labeled trees. (Adapted from Wikimedia 

Commons.) 

More detailed tables of frequencies for all forests by edge-count are given 

in the Appendix. We also measured the empirical probability of having 

kk components in the forest at stationarity. These match the theoretical 

computed from Cayley’s multinomial expansions. For instance, with 

n=7 we found roughly P (5-component forest) ≈0.034, matching the analytic formula from f7,4. 

 

Discussion 

Our results show that the Markov chainsaw provides a new probabilistic lens on Cayley’s enumeration. By 

embedding tree enumeration into a Markov process, classic formulas emerge naturally from stationarity 

conditions. In particular, Cayley’s nn−2 appears as the normalization of the uniform measure on all spanning 

trees (the stationary law of our chain). Conversely, known enumeration of forests (fn,k) appears in the 

probabilities of having kk components at stationarity, linking to the cuts applied in the chain. 

Comparing to other random-tree walks, our process is distinct from phylogenetic Markov chains (which 

swap leaves) but closely related to standard spanning-tree MC. Unlike the well-studied adjacent-swap or 

cycle-flip chains on graph structures, the chainsaw chain operates by edge deletion/addition and thus visits 

all forest states, not just spanning trees. This yields richer stationary behavior. In the limit of large nn, one 

could study how often the tree becomes disconnected, relating to known phase transitions (e.g.\ connectivity 
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in random graphs). Our analysis has been exact for finite n, and we observe rapid mixing for small nn. 

(Mixing times appear polynomial in nn, as expected from general theory.) 

There are limitations. The state space Fn grows super-exponentially, so exact analysis of mixing for large 

nn is challenging. Also, the uniform stationary law is a consequence of choosing all edges with equal 

probability; if we introduced bias (e.g.\ prefer deleting leaves), the stationary law would weight forests by 

edge-count. We have not explored such weighted variants in detail, but one could imagine a parameter 

controlling the expected number of edges, connecting to weighted random forests. Computationally, our 

Python simulations are feasible only up to n≈8 for exhaustive state-frequency checks; beyond that one must 

rely on sampling. 

Compared to other tree-walk models, our chainsaw highlights a fragmentation perspective. For instance, 

the results of Addario-Berry et al. (2014) for the root isolation problem can be reinterpreted in our 

framework: they prove that in a uniform Cayley tree the number of random cuts to isolate the root has an 

exact distribution given by a coupling. In our Markov chain, isolating the root corresponds to reaching a 

forest where the root is alone; the chain’s stationary law implies the distribution of that event. One could 

extend our model to rooted or weighted trees (e.g.\ preferentially cut certain edges) and ask how the 

stationary distribution shifts. 

In summary, the Markov chainsaw connects enumeration to dynamics: Cayley’s nn−2 emerges from 

equilibrium rather than from a direct bijection. The stochastic process perspective may also suggest new 

computational methods for generating random forests or approximating reliability metrics. In future work, 

one could consider continuous-time versions (edge removals at random rates), or explore connections to 

the additive coalescent (time-reversed fragmentation) of Pitman. Overall, Markovian pruning offers a 

playful yet rigorous angle on classical graph enumeration problems. 

Conclusion 

We have introduced and analyzed a chainsaw-style Markov process on labeled trees and forests. Our main 

findings are: 

• The chainsaw process on n labeled vertices is irreducible and aperiodic on the space of all labeled 

forests. We proved reversibility and found the stationary distribution explicitly. 

• In the stationary regime, each Cayley tree (spanning tree) occurs with equal probability, recovering 

Cayley’s formula nn−2. More generally, the probability of a forest with k components matches 

classical forest enumeration formulas. 

• Empirical simulations (for n=5,6,7) confirm rapid mixing and stationarity: frequencies of states 

match theory. The mixing times scale reasonably with nn, consistent with related random-tree 

chains. 

• The Markov framework provides new proofs and insights: detailed-balance conditions give 

combinatorial identities, and the process is linked to known algorithms (Wilson’s LERW) and 

fragmentation limits. 

Our study opens several directions. One can generalize to weighted trees (each edge having a removal 

probability proportional to a weight), yielding non-uniform stationary weights  . Another extension 

is continuous-time fragmentation: edges cut by a Poisson process, relating to Aldous–Pitman cut-tree 
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constructions. One could also consider directed graphs or hypergraph versions. Finally, analyzing the 

spectral gap or exact mixing time asymptotics of the chainsaw chain would be valuable for Markov chain 

theory. In all cases, the interplay between combinatorial counts and stochastic processes promises further 

insights into tree enumeration and random graph dynamics. 
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