Mathematical and Statistical Methods in the Application Fields of Data Mining Technology

Authors

DOI:

https://doi.org/10.69760/lumin.2025003006

Keywords:

data mining, statistics, linear algebra, optimization, machine learning

Abstract

In today’s digital age, enormous volumes of data are generated every moment. Data mining leverages mathematical and statistical methods—alongside machine learning, database management, and data visualization—to extract valuable knowledge from these large data sets. Its techniques are applied successfully in diverse areas, including business, government, healthcare, science, and sports, with use cases such as database marketing, fraud detection, retail analytics, credit scoring, astronomy, and molecular biology. Mathematics provides the backbone of these processes through statistics, optimization, linear algebra, probability theory, and other fields. Together, mathematical and statistical methods enable efficient preprocessing, accurate modeling, reliable forecasting, and optimization. Their integration makes large‑scale data easier to process and analyze, ultimately supporting informed decision‑making across multiple domains.

Author Biography

References

Brownlee, J. (2019a, August 12). Supervised and unsupervised machine learning algorithms. Machine Learning Mastery. https://machinelearningmastery.com/linear-algebra-machine-learning-7-day-mini-course/

Brownlee, J. (2019b, December 5). A tour of machine learning algorithms. Academia.edu. https://www.academia.edu/44070982/IRJET_Application_of_Linear_Algebra_in_Machine_Learning

Hendrastuty, N. (2024). Penerapan Data Mining Menggunakan Algoritma K-Means Clustering Dalam Evaluasi Hasil Pembelajaran Siswa. Jurnal Ilmiah Informatika dan Ilmu Komputer (JIMA-ILKOM), 3(1), 46-56.

Javaid, H. A. (2024). Improving fraud detection and risk assessment in financial service using predictive analytics and data mining. Integrated Journal of Science and Technology, 1(3).

Kharkovyna, O. (2019, October 12). Mathematics for AI: Linear algebra and how to understand it better.

Liu, H., Li, Y., Karsidag, M., Tu, T., & Wang, P. (2025). Technical and biological biases in bulk transcriptomic data mining for cancer research. Journal of Cancer, 16(1), 34.

Mining, W. I. D. (2006). Introduction to data mining. Mining Multimedia Databases, Mining Time Series and.

Mishra, S. (2017). Unsupervised learning and data clustering [Master’s thesis, Lund University Publications]. https://lup.lub.lu.se/luur/download?func=downloadFile&recordOId=9066702&fileOId=9066703

Tsiu, S. V., Ngobeni, M., Mathabela, L., & Thango, B. (2025). Applications and competitive advantages of data mining and business intelligence in SMEs performance: A systematic review. Businesses, 5(2), 22.

Zou, Z., Ohta, T., & Oki, S. (2024). ChIP-Atlas 3.0: a data-mining suite to explore chromosome architecture together with large-scale regulome data. Nucleic Acids Research, 52(W1), W45-W53.

Гаврилова, Т. А., & Хорошевский, В. Ф. (2001). Какая-то интеллектуальная система [An intelligent system]. Санкт‑Петербург: Питер.

Савченко, Л. М., & Бежитский, С. С. (2015). Data mining и области его применения [Data mining and its application areas]. Компьютерные и информационные науки, 1. https://cyberleninka.ru/article/n/datamining-i-oblasti-ego-primeneniya

Downloads

Published

2025-09-18

How to Cite

Seyidova , M. (2025). Mathematical and Statistical Methods in the Application Fields of Data Mining Technology. Luminis Applied Science and Engineering, 2(3), 81-87. https://doi.org/10.69760/lumin.2025003006

Similar Articles

1-10 of 19

You may also start an advanced similarity search for this article.