The role and importance of ethics in the use of artificial intelligence in medical education and in the diagnosis of chronic diseases

Authors

DOI:

https://doi.org/10.69760/aghel.02500139

Keywords:

Artificial Intelligence in Medical Education, Ethical Challenges in AI, Data Privacy and Bias in AI, AI Governance and Ethics in Medical Training

Abstract

The integration of artificial intelligence (AI) into medical education presents numerous opportunities for innovation and efficiency. However, it also introduces significant ethical concerns, including data privacy, bias in algorithms, informed consent, and the protection of student data. This paper explores these challenges and emphasizes the need for ethical oversight in AI-driven medical education. The absence of dedicated ethics committees for educational AI applications complicates the establishment of ethical guidelines, leading to gaps in regulation. The study highlights potential solutions, such as creating specialized ethics committees, improving transparency in AI algorithms, and training medical educators and students in ethical AI use. Addressing these ethical concerns will be essential to harnessing the benefits of AI while minimizing risks in medical education.

Author Biographies

References

Delpino F, Costa Â, Farias S, Chiavegatto Filho ADP, Arcêncio RA, Nunes B.(2022) Machine learning for predicting chronic diseases: a systematic review. Public Health 2022:205:14-25. doi: 10.1016/j.puhe.2022.01.007

Krishnamoorthy S, Alli P.(2015) A novel image recuperation approach for diagnosing and ranking retinopathy disease level using diabetic fundus image. PLoS One 2015; 10(5): e0125542.doi: 10.1371/journal.pone.0125542

Jain D, Singh V.(2018) Feature selection and classification systems for chronic disease prediction: A review. Egyptian Informatics Journal 2018;19(3):179-89.https://doi.org/10.1016/j.eij.2018.03.002

Higuchi M, Nagata T, Suzuki J, Yabuki T, Inomata S, Suzuki H.(2023) 105P Development and assessment of artificial intelligence detection of lung nodules on chest roentgenograms. Journal of Thoracic Oncology 2023;18(4):S101. doi: https://doi.org/10.1016/S1556 0864(23)00360-X

Montazeri M, Montazeri M, Bahaadinbeigy K, Montazeri M, Afraz A.(2022) Application of machine learning methods in predicting schizophrenia and bipolar disorders: A systematic review. Health Sci Rep2022;6(1):e962. doi: 10.1002/hsr2.962.

Amiri P, Montazeri M, Ghasemian F, Asadi F, Niksaz S, Sarafzadeh F, et al.(2023) Prediction of mortality risk and duration of hospitalization of COVID-19 patients with chronic comorbidities based on machine learning algorithms. Digit Health 2023:9:20552076231170493. doi: 10.1177/20552076231170493.

Kavakiotis I, Tsave O, Salifoglou A, Maglaveras N, Vlahavas I, Chouvarda I.(2017) Machine learning and data mining methods in diabetes research. Comput Struct Biotechnol J 2017:15:104-16. doi: 10.1016/j.csbj.2016.12.005.

Chaki J, Ganesh ST, Cidham S, Theertan SA.(2022)Machine learning and artificial intelligence based Diabetes Mellitus detection and self-management: A systematic review. Journal of King Saud University-Computer and Information Sciences 2022;34(6):3204-25. https://doi.org/10.1016/j.jksuci.2020.06.013

Ganesan V, De S, Shkumat N, Marchini G, Monga M(2018). Accurately diagnosing uric acid stones from conventional computerized tomography imaging: development and preliminary assessment of a pixel mapping software. J Urol 2018;199(2):487-494. doi: 10.1016/j.juro.2017.09.069.

Legouis D, Rinaldi A, Malpetti D, Arnoux G, Verissimo T, Faivre A, et al.(2024) A transfer learning framework to elucidate the clinical relevance of altered proximal tubule cell states in kidney disease. iScience 2024;27(3):109271. doi: 10.1016/j.isci.2024.109271

Hinterwimmer F, Serena RS, Wilhelm N, Breden S, Consalvo S, Seidl F, et al.(2024) Recommender-based bone tumour classification with radiographs-a link to the past. Eur Radiol 2024. doi: 10.1007/s00330-024-10672-0.

Khan S, Khan MA, Noor A, Fareed K.(2024) SASAN: ground truth for the effective segmentation and classification of skin cancer using biopsy images. Diagnosis (Berl) 2024. doi: 10.1515/dx-2024-0012.

Subramani S, Varshney N, Anand MV, Soudagar MEM, Al-Keridis LA, Upadhyay TK, et al(2023). Cardiovascular diseases prediction by machine learning incorporation with deep learning. Front Med (Lausanne) 2023:10:1150933. doi: 10.3389/fmed.2023.1150933

Aminah R, Saputro AH, editors.(2019) Diabetes prediction system based on iridology using machine learning. 6th International Conference on Information Technology, Computer and Electrical Engineering (ICITACEE); 2019 Sep 26-27; Semarang, Indonesia: IEEE; 2019. doi: 10.1109/ICITACEE.2019.8904125

Muzamil S, Hussain T, Haider A, Waraich U, Ashiq U, Ayguadé E.(2020) An intelligent iris based chronic kidney identification system. Symmetry. 2020;12(12):2066. doi:10.3390/sym12122066

Samant P, Agarwal R.(2018) Machine learning techniques for medical diagnosis of diabetes using iris images. Comput Methods Programs Biomed 2018:157:121-8. doi: 10.1016/j.cmpb.2018.01.004.

Özbilgin F, Kurnaz Ç, Aydın E.(2023) Prediction of coronary artery disease using machine learning techniques with iris analysis. Diagnostics 2023;13(6):1081. https://doi.org/10.3390/diagnostics13061081

Yohannes C, Nurtanio I, Halim K.(2020) Potential of Heart Disease Detection Based on Iridology. IOPConference Series: Materials Science and Engineering.IOP Conference Series Materials Science and Engineering 2020; 875(1):012034. doi:10.1088/1757-899X/875/1/012034

Agarwal R, Samant P, Bansal A, Agarwal R.(2023) Artificial Intelligence for Iris-Based Diagnosis in Healthcare. Handbook of Metrology and Applications: Springer; 2023. p. 1-31.

Tai MC.(2020) The impact of artificial intelligence on human society and bioethics. Tzu Chi Med J 2020;32(4):339-343. [DOI:10.4103/tcmj.tcmj_71_20]

Hamamoto R.(2021) Application of Artificial Intelligence for Medical Research. Biomolecules. 2021 Jan 12;11(1):90. [DOI:10.3390/biom11010090]

Gore JC.(2019) Artificial intelligence in medical imaging. Magn Reson Imaging 2020;68:A1-A4.[DOI:10.1016/j.mri.2019.12.006]

Noorbakhsh-Sabet N, Zand R, Zhang Y, Abedi V.(2019) Artificial Intelligence Transforms the Future of Health Care. Am J Med 2019;132(7):795-801. [DOI:10.1016/j.amjmed.2019.01.017]

Savage TR.(2021) Artificial Intelligence in Medical Education. Acad Med 2021;96(9):1229-1230. [DOI:10.1097/ACM.0000000000004183]

Grunhut J, Marques O, Wyatt ATM.(2022) Needs, Challenges, and Applications of Artificial Intelligence in Medical Education Curriculum. JMIR Med Educ 2022;8(2):e35587. [DOI:10.2196/35587]

Masters K.(2023) Ethical use of Artificial Intelligence in Health Professions Education: AMEE Guide No. 158. Med Teach 2023;45(6):574-584. [DOI:10.1080/0142159X.2023.2186203]

Masters K.(2020) Ethics in medical education digital scholarship: AMEE Guide No. 134 Med Teach. 2020;42(3):252-265. [DOI:10.1080/0142159X.2019.1695043]

Narayanan A, Shmatikov V.(2009) De-anonymizing social networks. in 30th IEEE symposium on security and privacy; 2009 May 17; 2009: IEEE. [DOI:10.1109/SP.2009.22]

Masters K.(2023) Ethical use of artificial intelligence in health professions education: AMEE Guide No. 158. Medical Teacher 2023;45(6):574-84. [DOI:10.1080/0142159X.2023.2186203]

Jones KM, Thomson J, Arnold K.(2014) Questions of data ownership on campus. Educause Review ;2014.

Nelson GS(2019). Bias in artificial intelligence. North Carolina medical journal 2019;80(4):220-2.[DOI:10.18043/ncm.80.4.220]

Norori N, Hu Q, Aellen FM, Faraci FD, Tzovara A.(2021) Addressing bias in big data and AI for health care: A call for open science. Patterns 2021;2(10):100347. [DOI:10.1016/j.patter.2021.100347]

Buolamwini J, Gebru T. (2018) Gender shades: Intersectional accuracy disparities in commercial gender classification. InConference on fairness, accountability and transparency 2018 Jan 21. PMLR.

Meek T, Barham H, Beltaif N, Kaadoor A, Akhter T.(20016) Managing the ethical and risk implications ofrapid advances in artificial intelligence: A literature review.Portland International Conference on Management of Engineering and Technology (PICMET); 2016 Sep 4; IEEE; 2016.[DOI:10.1109/PICMET.2016.7806752]

Downloads

Published

2025-02-26

How to Cite

Ekram Yawar, M., & Qurban Hakimi, M. (2025). The role and importance of ethics in the use of artificial intelligence in medical education and in the diagnosis of chronic diseases. Acta Globalis Humanitatis Et Linguarum, 2(1), 308-314. https://doi.org/10.69760/aghel.02500139

Similar Articles

11-20 of 78

You may also start an advanced similarity search for this article.